首頁 雜志概況 投稿須知 在線投稿 在線閱讀 征訂啟事 廣告服務 行業資訊 企業動態 資料中心  專訪報道 會展信息 ENGLISH

引用本文:   陳煒, 雷和花, 宋濤, 張利民, 雷皓. 小鼠腦代謝物活體磁共振波譜分析及與離體樣本磁共振波譜與質譜定量分析的比較研究. 分析化學, 2019, 47(10): 1671-1679. doi:  10.19756/j.issn.0253-3820.191439 [復制]

Citation:   CHEN Wei , LEI He-Hua , SONG Tao , ZHANG Li-Min , LEI Hao . Quantitative Analysis of Cerebral Metabolites in Mice by in Vivo 1H-MRS and Comparison of Detection Results of Tissue Extracts Obtained by 1H-NMR and UHPLC-MS/MS. Chinese Journal of Analytical Chemistry, 2019, 47(10): 1671-1679. doi: 10.19756/j.issn.0253-3820.191439 [復制]

小鼠腦代謝物活體磁共振波譜分析及與離體樣本磁共振波譜與質譜定量分析的比較研究

通訊作者:  雷皓, [email protected]

收稿日期: 2019-07-24

基金項目: 本文系國家自然科學基金項目(Nos.21790390,21790392)和王寬誠基金會資助

Quantitative Analysis of Cerebral Metabolites in Mice by in Vivo 1H-MRS and Comparison of Detection Results of Tissue Extracts Obtained by 1H-NMR and UHPLC-MS/MS

Corresponding author:  LEI Hao , [email protected]

Received Date:  2019-07-24

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos.21790390, 21790392).

以水為內標的活體質子磁共振波譜(1H-MRS)可非侵入性、原位、同時、定量分析多種腦代謝物的濃度,在臨床神經/精神疾病診斷、療效評估及相關基礎研究中得到廣泛應用。為驗證以水為內標的活體1H-MRS定量分析的準確性,本研究采集了小鼠紋狀體和內側前額葉腦區的活體1H-MRS,測定了N-乙酰基天冬氨酸(NAA)、谷氨酸(Glu)、牛磺酸(Tau)、谷氨酰胺(Gln)和谷胱甘肽(GSH)這5種代謝物的絕對濃度;隨后采集對應腦區的組織樣本,經萃取后用液體核磁共振波譜(1H-NMR)和超高效液相色譜-串聯質譜聯用(UHPLC-MS/MS)法定量分析上述代謝物。經統計比較發現:3種方法所測得的NAA、Glu和Tau的絕對濃度無顯著差異,且與文獻報道一致,提示活體1H-MRS定量分析具有與離體分析基本一致的準確性。活體1H-MRS和腦組織萃取樣本1H-NMR定量分析所得的Gln和GSH的絕對濃度無顯著差異。UHPLC-MS/MS測得的Gln和GSH濃度與磁共振方法所得的結果顯著不同,這可能是在樣品前處理、離子化或定量過程中引入了系統誤差所致。本研究初步驗證了聯合運用活體1H-MRS和離體磁共振/質譜方法對同一腦區中多種代謝物進行同步定量分析的可行性。

關鍵詞:   質子磁共振波譜, 活體分析, 超高效液相色譜-串聯質譜, 絕對定量, 內標準
Key words:   1H-magnetic resonance spectroscopy, In vivo analysis, Ultrahigh performance liquid chromatography tandem mass spectrometry, Absolute quantification, Internal standard
[1]

Duarte J M N, Lei H, Mlynárik V, Gruetter R. Neuroimage, 2012, 61(2):342-362

[2]

Mitolo M, Stanzani-Maserati M, Capellari S, Testa C, Rucci P, Poda R, Oppi F, Gallassi R, Sambati L, Rizzo G, Parchi P, Evangelisti S, Talozzi L, Tonon C, Lodi R, Liguori R. Neuroimage Clin., 2019, 23:101843

[3]

Mohajeri S, Bezabeh T, Ijare O B, King S B, Thomas M A, Minuk G, Lipschitz J, Kirkpatrick I, Micflikier A B, Summers R, Smith I C P. NMR Biomed., 2019, 32(5):e4065

[4]

Guan J, Rong Y, Wen Y, Wu H, Qin H, Zhang Q, Chen W. Brain Behav., 2017, 7(9):e00792

[5]

Pepin J, Francelle L, Carrillo-De Sauvage M A, De Longprez L, Gipchtein P, Cambon K, Valette J, Brouillet E, Flament J. Neuroimage, 2016, 139:53-64

[6]

Zhang H, Zou Y, Lei H. NMR Biomed., 2019, 32(1):e4024

[7]

Li B S Y, Wang H, Gonen O. Magn. Reson. Imaging, 2003, 21(8):923-928

[8]

Goldenberg J M, Pagel M D. NMR Biomed., 2018, e3943

[9]

Carlson H L, Macmaster F P, Harris A D, Kirton A. Hum. Brain Mapp., 2017, 38(3):1574-1587

[10]

Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson H B W. Magn. Reson. Imaging, 1993, 11(1):107-118

[11]

Soher B J, Hurd R E, Sailasuta N, Barker P B. Magn. Reson. Med., 1996, 36(3):335-339

[12]

Brief E E, Moll R, Li D K B, Mackay A L. NMR Biomed., 2009, 22(3):349-354

[13]

Morgan J J, Kleven G A, Tulbert C D, Olson J, Horita D A, Ronca A E. NMR Biomed., 2013, 26(6):683-691

[14]

Zhang X, Liu H, Wu J, Zhang X, Liu M, Wang Y. Neurochem. Int., 2009, 54(8):481-487

[15]

Durani L W, Hamezah H S, Ibrahim N F, Yanagisawa D, Makpol S, Damanhuri H A, Tooyama I. Biochem. Biophys. Res. Commun., 2017, 493(3):1356-1363

[16]

Yamamoto T, Isobe T, Akutsu H, Masumoto T, Ando H, Sato E, Takada K, Anno I, Matsumura A. Magn. Reson. Imaging, 2015, 33(5):644-648

[17]

Thac I, Starcuk Z, Choi I Y, Gruetter R. Magn. Reson. Med., 1999, 41(4):649-656

[18]

Provencher S W. NMR Biomed., 2001, 14(4):260-264

[19]

Tkac I, Dubinsky J M, Keene C D, Gruetter R, Low W C. J. Neurochem., 2007, 100(5):1397-1406

[20]

Weiss K, Melkus G, Jakob P M, Faber C. Magn. Reson. Mater. Phy., 2009, 22(1):53-62

[21]

Tkac I, Henry P G, Andersen P, Keene C D, Low W C, Gruetter R. Magn. Reson. Med., 2004, 52(3):478-484

[22]

Zacharoff L, Tkac I, Song Q, Tang C, Bolan P J, Mangia S, Henry P-G, Li T, Dubinsky J M. J. Cereb. Blood Flow Metab., 2012, 32(3):502-514

[23]

Chang C, Jang T C. J. Neurochem., 1995, 65(3):1192-1198

[24]

Bagga P, Patel A B. Neurochem. Int., 2012, 60(2):177-185

[25]

Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traore A, Durif F. J. Neurochem., 2008, 105(3):874-882

[26]

Govind V, Young K, Maudsley A A. NMR Biomed., 2015, 28(7):923-924

[27]

Kim T H, Choi J, Kim H G, Kim H R. J. Anal. Methods Chem., 2014, 2014:506870

[28]

Delafiori J, Ring G, Furey A. Talanta, 2016, 153:306-331

[29]

Kulak A, Duarte J M, Do K Q, Gruetter R. J. Neurochem., 2010, 115(6):1466-1477

[30]

Bergh M S, Bogen I L, Lundanes E, Oiestad A M L. J. Chromatogr. B, 2016, 1028:120-129

[31]

Bathena S P, Huang J, Epstein A A, Gendelman H E, Boska M D, Alnouti Y. J. Chromatogr. B, 2012, 893:15-20

[32]

Tzika A A, Cheng L L, Goumnerova L, Madsen J R, Zurakowski D, Astrakas L G, Zarifi M K, Scott R M, Anthony D C, Gonzalez R G, Black P M. J. Neurosurg., 2002, 96(6):1023-1031

[33]

Kim S, Lee H, Kim H, Bang E, Lee S, Lee D, Woo D, Choi C, Hong K S, Lee C, Choe B Y. NMR Biomed., 2011, 24(10):1235-1242

[34]

Matuszewski B K, Constanzer M L, Chavez-Eng C M. Anal. Chem., 2003, 75(13):3019-3030

[35]

Van De Steene J C, Lambert W E. J. Am. Soc. Mass Spectosc., 2008, 19(5):713-718

[36]

Bujak R, Struck-Lewicka W, Markuszewski M J, Kaliszan R. J. Pharm. Biomed. Anal., 2015, 113:108-20

[37]

Takach E, O'shea T, Liu H. J. Chromatogr. B, 2014, 964:180-190

[38]

Wang J, Zhou L, Lei H, Hao F, Liu X, Wang Y, Tang H. Sci. Rep., 2017, 7(1):1423

[39]

Menzie J, Pan C, Prentice H, Wu J Y. Amino. Acids, 2014, 46(1):31-46

[40]

Nam S Y, Kim H M, Jeong H J. Life Sci., 2017, 184:18-24

[41]

Li X W, Gao H Y, Liu J. Nutr. Neurosci., 2017, 20(7):409-415

[42]

Pasantes-Morales H, Hernandez-Benitez R. Neurochem. Res., 2010, 35(12):1939-1943

計量
  • PDF下載量(22)
  • 文章訪問量(177)
  • HTML全文瀏覽量(3)

目錄

小鼠腦代謝物活體磁共振波譜分析及與離體樣本磁共振波譜與質譜定量分析的比較研究

陳煒, 雷和花, 宋濤, 張利民, 雷皓

Figures and Tables

3d全部独胆三地村胆码